SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Willemsen Gonneke) ;pers:(De Geus Eco J. C.);pers:(Magnusson Patrik K E)"

Search: WFRF:(Willemsen Gonneke) > De Geus Eco J. C. > Magnusson Patrik K E

  • Result 1-10 of 10
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Albrecht, Eva, et al. (author)
  • Telomere length in circulating leukocytes is associated with lung function and disease
  • 2014
  • In: European Respiratory Journal. - : European Respiratory Society (ERS). - 0903-1936 .- 1399-3003. ; 43:4, s. 983-992
  • Journal article (peer-reviewed)abstract
    • Several clinical studies suggest the involvement of premature ageing processes in chronic obstructive pulmonary disease (COPD). Using an epidemiological approach, we studied whether accelerated ageing indicated by telomere length, a marker of biological age, is associated with COPD and asthma, and whether intrinsic age-related processes contribute to the interindividual variability of lung function. Our meta-analysis of 14 studies included 934 COPD cases with 15 846 controls defined according to the Global Lungs Initiative (GLI) criteria (or 1189 COPD cases according to the Global Initiative for Chronic Obstructive Lung Disease (GOLD) criteria), 2834 asthma cases with 28 195 controls, and spirometric parameters (forced expiratory volume in is (FEV1), forced vital capacity (PVC) and FEV1/FVC) of 12 595 individuals. Associations with telomere length were tested by linear regression, adjusting for age, sex and smoking status. We observed negative associations between telomere length and asthma (beta= -0.0452, p= 0.024) as well as COPD (beta= -0.0982, p=0.001), with associations being stronger and more significant when using GLI criteria than those of GOLD. In both diseases, effects were stronger in females than males. The investigation of spirometric indices showed positive associations between telomere length and FEV1 (p=1.07 x 10(-7)), FVC (p=2.07 x 10(-5)), and FEV1/FVC (p =5.27 x 10(-3)). The effect was somewhat weaker in apparently healthy subjects than in COPD or asthma patients. Our results provide indirect evidence for the hypothesis that cellular senescence may contribute to the pathogenesis of COPD and asthma, and that lung function may reflect biological ageing primarily due to intrinsic processes, which are likely to be aggravated in lung diseases.
  •  
2.
  • Demirkan, Ayse, et al. (author)
  • Genetic architecture of circulating lipid levels
  • 2011
  • In: European Journal of Human Genetics. - : Springer Science and Business Media LLC. - 1018-4813 .- 1476-5438. ; 19:7, s. 813-819
  • Journal article (peer-reviewed)abstract
    • Serum concentrations of low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), triglycerides (TGs) and total cholesterol (TC) are important heritable risk factors for cardiovascular disease. Although genome-wide association studies (GWASs) of circulating lipid levels have identified numerous loci, a substantial portion of the heritability of these traits remains unexplained. Evidence of unexplained genetic variance can be detected by combining multiple independent markers into additive genetic risk scores. Such polygenic scores, constructed using results from the ENGAGE Consortium GWAS on serum lipids, were applied to predict lipid levels in an independent population-based study, the Rotterdam Study-II (RS-II). We additionally tested for evidence of a shared genetic basis for different lipid phenotypes. Finally, the polygenic score approach was used to identify an alternative genome-wide significance threshold before pathway analysis and those results were compared with those based on the classical genome-wide significance threshold. Our study provides evidence suggesting that many loci influencing circulating lipid levels remain undiscovered. Cross-prediction models suggested a small overlap between the polygenic backgrounds involved in determining LDL-C, HDL-C and TG levels. Pathway analysis utilizing the best polygenic score for TC uncovered extra information compared with using only genome-wide significant loci. These results suggest that the genetic architecture of circulating lipids involves a number of undiscovered variants with very small effects, and that increasing GWAS sample sizes will enable the identification of novel variants that regulate lipid levels.
  •  
3.
  • Elks, Cathy E, et al. (author)
  • Thirty new loci for age at menarche identified by a meta-analysis of genome-wide association studies
  • 2010
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 42:12, s. 1077-85
  • Journal article (peer-reviewed)abstract
    • To identify loci for age at menarche, we performed a meta-analysis of 32 genome-wide association studies in 87,802 women of European descent, with replication in up to 14,731 women. In addition to the known loci at LIN28B (P = 5.4 × 10⁻⁶⁰) and 9q31.2 (P = 2.2 × 10⁻³³), we identified 30 new menarche loci (all P < 5 × 10⁻⁸) and found suggestive evidence for a further 10 loci (P < 1.9 × 10⁻⁶). The new loci included four previously associated with body mass index (in or near FTO, SEC16B, TRA2B and TMEM18), three in or near other genes implicated in energy homeostasis (BSX, CRTC1 and MCHR2) and three in or near genes implicated in hormonal regulation (INHBA, PCSK2 and RXRG). Ingenuity and gene-set enrichment pathway analyses identified coenzyme A and fatty acid biosynthesis as biological processes related to menarche timing.
  •  
4.
  • Hemani, Gibran, et al. (author)
  • Inference of the Genetic Architecture Underlying BMI and Height with the Use of 20,240 Sibling Pairs
  • 2013
  • In: American Journal of Human Genetics. - : Elsevier BV. - 0002-9297 .- 1537-6605. ; 93:5, s. 865-875
  • Journal article (peer-reviewed)abstract
    • Evidence that complex traits are highly polygenic has been presented by population-based genome-wide association studies (GWASs) through the identification of many significant variants, as well as by family-based de novo sequencing studies indicating that several traits have a large mutational target size. Here, using a third study design, we show results consistent with extreme polygenicity for body mass index (BMI) and height. On a sample of 20,240 siblings (from 9,570 nuclear families), we used a within-family method to obtain narrow-sense heritability estimates of 0.42 (SE = 0.17, p = 0.01) and 0.69 (SE = 0.14, p = 6 x 10(-7)) for BMI and height, respectively, after adjusting for covariates. The genomic inflation factors from locus-specific-linkage analysis were 1.69 (SE = 0.21, p = 0.04) for BMI and 2.18 (SE = 0.21, p = 2 x 10(-10)) for height. This inflation is free of confounding and congruent with polygenicity, consistent with observations of ever-increasing genomic-inflation factors from GWASs with large sample sizes, implying that those signals are due to true genetic signals across the genome rather than population stratification. We also demonstrate that the distribution of the observed test statistics is consistent with both rare and common variants underlying a polygenic architecture and that previous reports of linkage signals in complex traits are probably a consequence of polygenic architecture rather than the segregation of variants with large effects. The convergent empirical evidence from GWASs, de novo studies, and within-family segregation implies that family-based sequencing studies for complex traits require very large sample sizes because the effects of causal variants are small on average.
  •  
5.
  • Palmer, Nicholette D, et al. (author)
  • A genome-wide association search for type 2 diabetes genes in African Americans.
  • 2012
  • In: PloS one. - San Francisco : Public Library of Science (PLoS). - 1932-6203. ; 7:1, s. e29202-
  • Journal article (peer-reviewed)abstract
    • African Americans are disproportionately affected by type 2 diabetes (T2DM) yet few studies have examined T2DM using genome-wide association approaches in this ethnicity. The aim of this study was to identify genes associated with T2DM in the African American population. We performed a Genome Wide Association Study (GWAS) using the Affymetrix 6.0 array in 965 African-American cases with T2DM and end-stage renal disease (T2DM-ESRD) and 1029 population-based controls. The most significant SNPs (n = 550 independent loci) were genotyped in a replication cohort and 122 SNPs (n = 98 independent loci) were further tested through genotyping three additional validation cohorts followed by meta-analysis in all five cohorts totaling 3,132 cases and 3,317 controls. Twelve SNPs had evidence of association in the GWAS (P<0.0071), were directionally consistent in the Replication cohort and were associated with T2DM in subjects without nephropathy (P<0.05). Meta-analysis in all cases and controls revealed a single SNP reaching genome-wide significance (P<2.5×10(-8)). SNP rs7560163 (P = 7.0×10(-9), OR (95% CI) = 0.75 (0.67-0.84)) is located intergenically between RND3 and RBM43. Four additional loci (rs7542900, rs4659485, rs2722769 and rs7107217) were associated with T2DM (P<0.05) and reached more nominal levels of significance (P<2.5×10(-5)) in the overall analysis and may represent novel loci that contribute to T2DM. We have identified novel T2DM-susceptibility variants in the African-American population. Notably, T2DM risk was associated with the major allele and implies an interesting genetic architecture in this population. These results suggest that multiple loci underlie T2DM susceptibility in the African-American population and that these loci are distinct from those identified in other ethnic populations.
  •  
6.
  • Scott, Robert A., et al. (author)
  • Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways
  • 2012
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 44:9, s. 991-1005
  • Journal article (peer-reviewed)abstract
    • Through genome-wide association meta-analyses of up to 133,010 individuals of European ancestry without diabetes, including individuals newly genotyped using the Metabochip, we have increased the number of confirmed loci influencing glycemic traits to 53, of which 33 also increase type 2 diabetes risk (q < 0.05). Loci influencing fasting insulin concentration showed association with lipid levels and fat distribution, suggesting impact on insulin resistance. Gene-based analyses identified further biologically plausible loci, suggesting that additional loci beyond those reaching genome-wide significance are likely to represent real associations. This conclusion is supported by an excess of directionally consistent and nominally significant signals between discovery and follow-up studies. Functional analysis of these newly discovered loci will further improve our understanding of glycemic control.
  •  
7.
  • Stolk, Lisette, et al. (author)
  • Meta-analyses identify 13 loci associated with age at menopause and highlight DNA repair and immune pathways
  • 2012
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 44:3, s. 260-268
  • Journal article (peer-reviewed)abstract
    • To newly identify loci for age at natural menopause, we carried out a meta-analysis of 22 genome-wide association studies (GWAS) in 38,968 women of European descent, with replication in up to 14,435 women. In addition to four known loci, we identified 13 loci newly associated with age at natural menopause (at P < 5 × 10(-8)). Candidate genes located at these newly associated loci include genes implicated in DNA repair (EXO1, HELQ, UIMC1, FAM175A, FANCI, TLK1, POLG and PRIM1) and immune function (IL11, NLRP11 and PRRC2A (also known as BAT2)). Gene-set enrichment pathway analyses using the full GWAS data set identified exoDNase, NF-κB signaling and mitochondrial dysfunction as biological processes related to timing of menopause.
  •  
8.
  • Surakka, Ida, et al. (author)
  • A Genome-Wide Association Study of Monozygotic Twin-Pairs Suggests a Locus Related to Variability of Serum High-Density Lipoprotein Cholesterol
  • 2012
  • In: Twin Research and Human Genetics. - : Cambridge University Press (CUP). - 1832-4274 .- 1839-2628. ; 15:6, s. 691-699
  • Journal article (peer-reviewed)abstract
    • Genome-wide association analysis on monozygotic twin-pairs offers a route to discovery of gene-environment interactions through testing for variability loci associated with sensitivity to individual environment/lifestyle. We present a genome-wide scan of loci associated with intra-pair differences in serum lipid and apolipoprotein levels. We report data for 1,720 monozygotic female twin-pairs from GenomEUtwin project with 2.5 million SNPs, imputed or genotyped, and measured serum lipid fractions for both twins. We found one locus associated with intra-pair differences in high-density lipoprotein cholesterol, rs2483058 in an intron of SRGAP2, where twins carrying the C allele are more sensitive to environmental factors (P = 3.98 × 10-8). We followed up the association in further genotyped monozygotic twins (N = 1,261), which showed a moderate association for the variant (P = 0.200, same direction of an effect). In addition, we report a new association on the level of apolipoprotein A-II (P = 4.03 × 10-8).
  •  
9.
  • Teslovich, Tanya M., et al. (author)
  • Biological, clinical and population relevance of 95 loci for blood lipids
  • 2010
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 466:7307, s. 707-713
  • Journal article (peer-reviewed)abstract
    • Plasma concentrations of total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol and triglycerides are among the most important risk factors for coronary artery disease (CAD) and are targets for therapeutic intervention. We screened the genome for common variants associated with plasma lipids in >100,000 individuals of European ancestry. Here we report 95 significantly associated loci (P<5 x 10(-8)), with 59 showing genome-wide significant association with lipid traits for the first time. The newly reported associations include single nucleotide polymorphisms (SNPs) near known lipid regulators (for example, CYP7A1, NPC1L1 and SCARB1) as well as in scores of loci not previously implicated in lipoprotein metabolism. The 95 loci contribute not only to normal variation in lipid traits but also to extreme lipid phenotypes and have an impact on lipid traits in three non-European populations (East Asians, South Asians and African Americans). Our results identify several novel loci associated with plasma lipids that are also associated with CAD. Finally, we validated three of the novel genes-GALNT2, PPP1R3B and TTC39B-with experiments in mouse models. Taken together, our findings provide the foundation to develop a broader biological understanding of lipoprotein metabolism and to identify new therapeutic opportunities for the prevention of CAD.
  •  
10.
  • Wheeler, Eleanor, et al. (author)
  • Impact of common genetic determinants of Hemoglobin A1c on type 2 diabetes risk and diagnosis in ancestrally diverse populations : A transethnic genome-wide meta-analysis
  • 2017
  • In: PLoS Medicine. - : PUBLIC LIBRARY SCIENCE. - 1549-1277 .- 1549-1676. ; 14:9
  • Journal article (peer-reviewed)abstract
    • Background: Glycated hemoglobin (HbA1c) is used to diagnose type 2 diabetes (T2D) and assess glycemic control in patients with diabetes. Previous genome-wide association studies (GWAS) have identified 18 HbA1c-associated genetic variants. These variants proved to be classifiable by their likely biological action as erythrocytic (also associated with erythrocyte traits) or glycemic (associated with other glucose-related traits). In this study, we tested the hypotheses that, in a very large scale GWAS, we would identify more genetic variants associated with HbA1c and that HbA1c variants implicated in erythrocytic biology would affect the diagnostic accuracy of HbA1c. We therefore expanded the number of HbA1c-associated loci and tested the effect of genetic risk-scores comprised of erythrocytic or glycemic variants on incident diabetes prediction and on prevalent diabetes screening performance. Throughout this multiancestry study, we kept a focus on interancestry differences in HbA1c genetics performance that might influence race-ancestry differences in health outcomes.Methods & findings: Using genome-wide association meta-analyses in up to 159,940 individuals from 82 cohorts of European, African, East Asian, and South Asian ancestry, we identified 60 common genetic variants associated with HbA1c. We classified variants as implicated in glycemic, erythrocytic, or unclassified biology and tested whether additive genetic scores of erythrocytic variants (GS-E) or glycemic variants (GS-G) were associated with higher T2D incidence in multiethnic longitudinal cohorts (N = 33,241). Nineteen glycemic and 22 erythrocytic variants were associated with HbA1c at genome-wide significance. GS-G was associated with higher T2D risk (incidence OR = 1.05, 95% CI 1.04-1.06, per HbA1c-raising allele, p = 3 x 10-29); whereas GS-E was not (OR = 1.00, 95% CI 0.99-1.01, p = 0.60). In Europeans and Asians, erythrocytic variants in aggregate had only modest effects on the diagnostic accuracy of HbA1c. Yet, in African Americans, the X-linked G6PD G202A variant (T-allele frequency 11%) was associated with an absolute decrease in HbA1c of 0.81%-units (95% CI 0.66-0.96) per allele in hemizygous men, and 0.68%-units (95% CI 0.38-0.97) in homozygous women. The G6PD variant may cause approximately 2% (N = 0.65 million, 95% CI0.55-0.74) of African American adults with T2Dto remain undiagnosed when screened with HbA1c. Limitations include the smaller sample sizes for non-European ancestries and the inability to classify approximately one-third of the variants. Further studies in large multiethnic cohorts with HbA1c, glycemic, and erythrocytic traits are required to better determine the biological action of the unclassified variants.Conclusions: As G6PD deficiency can be clinically silent until illness strikes, we recommend investigation of the possible benefits of screening for the G6PD genotype along with using HbA1c to diagnose T2D in populations of African ancestry or groups where G6PD deficiency is common. Screening with direct glucose measurements, or genetically-informed HbA1c diagnostic thresholds in people with G6PD deficiency, may be required to avoid missed or delayed diagnoses.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view